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Hyperbolic Conservation Laws - Introduction

e Hyperbolic Conservation Laws can be written in the form:
ou +V-FU)=S
ot
e More explicit form:

U = 9F4U)

E_I_Z oxd

d=0

e Changing to primitive variables, W = W (U):

ow BWd

— + Z Ad(W) = S’

A% = VUW-VUFd-VWU
S'=VyW .S



Hyperbolic Conservation Laws - Examples

e 2D Gas Dynamics (Compressible Euler Equations):

U = (p, pu1, puz, pE)
F' = (puy, pu? + p, puius, pur E + uip)

F2 — (p’u,z, pPpULU2, pug + D, pqu + ’l,sz)
S=0
W = (P, ’U,l,’U,z,E)

p=(y—1)pe

e = (B~ (u +ud)



Hyperbolic Conservation Laws - Examples

e Ideal MHD:
U = (p, pii, B, pE)
F = (pd,
piii + (P + |B|>)I — BB,
@B — Bu,
(pE 4+ P + | B|*)i — ;- (i-B)B)
S =0

W = (p,u, B, FE)
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pE = (Cplil* + | B + J5P)



Hyperbolic Conservation Laws - Discretization

e Notation and indexing: 7 is a spatial index and n is a time
index:
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e The spatial index and the time index are related to physical
coordinates via h and At, respectively



e Cells are grouped into boxes:

e Boxes are grouped into levels:




Hyperbolic Conservation Laws - Discretization

e Levels at different resolutions are nested:

e This nesting allows the coarser level to define the boundary
conditions for the finer level:
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level




Hyperbolic Conservation Laws - Discretization
e Consider a single level (collection of boxes) at a fixed resolution

e Approximate the divergence of the flux in each cell of each box:

V.F ~ DF = n Z(F{i%ed — Fid—%ed)

e This is exact if V- F was a cell average and the Fic_ﬂc 1,4 Were
2

face averages (divergence theorem)



e Second-order accurate in space if fluxes are second-order
accurate

e Update the solution:
Ut = U™ — At(DF), F = F(U"™)
e The critical element is the accurate computation of F¢ in space
and time

e Second-order accuracy in time is achieved by using a
predictor-corrector method



Hyperbolic Conservation Laws - Algorithm

Given U* and S, we want to compute a second-order accurate
estimate of the fluxes:

1

1 1
F 2, = F(xo + (i + 5ed)h, t"™ + 5At)

1. Compute the effect of the normal derivative terms and the
source term on the extrapolation in space and time from cell
centers to faces. For 0 < d < D:

1 At
Wita= W]+ _(£I - TAg)Pi(AdWi)

A? = AY(W,)
PL(W)= > (- W)r
+Xi >0

At i
Wita=Wita+ 7VUW - S,



where Ay are eigenvalues of Agl, and l;, and r are the
corresponding left and right eigenvectors.

2. Compute estimates of F'¢ suitable for computing 1D flux

OF4
Oxd

for the boundary, Rg. Here, and in what follows, VW need

derivatives using a Riemann solver for the interior, R, and

only be first-order accurate, e.g., differ from the value at U* by
O(h):

FlD — R(Wia+’d’ Wi.'.ed’_’d, d)

i+Zed

1
Rp(W; +.4, (1 + Eed)h, d)

1
Rp(Wited,—a, (1 + Eed)h, d)

3. In 3D compute corrections to W; 4 4 corresponding to one set
of transverse derivatives appropriate to obtain (1,1, 1)



diagonal coupling. In 2D skip this step:

(2

At
Wia:l:7dlyd2 — W"'w:l:,dl T %VUW ) (F}E%Gdz o FilP%edZ)

4. In 3D compute fluxes corresponding to corrections made in the
previous step. In 2D skip this step:

F’i"‘%edl ,d2 — R(Wi’+ad1 yd2 9 Wi"‘edl y—yd1,d2? dl)

1
Rp(Wi, 1 dy,dss (T + Eedl)ha d,)

1
RB(Wi+ed1,—,d1,d27 ("J + Qedl)hv dl)

5. Compute final corrections to W; 1 4 due to the final transverse



derivatives:

n At
2D W, +2 = Wi+,d — %VUW ) (FilDledl — F'°, ar)

'1,—56

n At
3D W +2 — W’L,:I:d —_ —hVUW ( _|_; dq ,do F’i—%edl,dz)

At
AW - (B putnas — Fiyena)

6. Compute final estimate of fluxes:

n—l—% n+2 n+2
F = ROV W
| Rp(W,} 2, 2, (i + §€d)ha d)

1
| Re(W[2 (G + 5 eh, d)



7. Update the solution using the divergence of the fluxes:

Uin—l-l Un_ =" Z( n+2 _ .n—|—2

1,+ ed 'L—§ed

e Fourth order slope calculations with limiting and flattening
e Extensions to piecewise parabolic methods (PPM)

e Second-order accurate in space and time

e “Accurate” shock capture - robust and stable

e This is an “unsplit” algorithm for the updating of the
conservative quantities, U

e Everything has been reduced to computations that can be
computed box by box (if ghost cells are used) and all reduced to
1D



Hyperbolic Conservation Laws - Implementation

e All physics independent code has been implemented and
requires no modification by the user:

— The framework for time dependent, adaptive mesh
refinement (AMR) computations, including: AMR mesh
generation, time step control, interaction between levels

— All the computations for hyperbolic conservation laws with
the exception of a handful of physics dependent routines

— Parallel computation without modifications to code - only
recompilation



Hyperbolic Conservation Laws - Implementation

e Recall Step 1 of the algorithm:
1 At
Wi,:l:,d = W,L-n -+ 5(:':[ — TA;Z)P:E(ACZW’&)
Al = (VyW),; - VuF? - (VwU);

e The following physics dependent routines must be provided by
the user:

— Eigen-analysis of the linearization of A%*(W):
transformations between characteristic variables
(eigenvectors) and primitive variables, computation of
eigenvalues

— The solution to 1D Riemann problems given the primitive
variable values on each side of a face

— Quasilinear update - computation of: A4(W)Py(A*W)/h

— Maximum wave speed (in a box) given the conserved



variable values (in the box)

— The transformation of conserved variables to primitive
variables

— The computation of fluxes on a face given the value of the
primitive variables on the face

— Physical boundary conditions - if the boundaries of the
domain are periodic then this is trivial to provide

— Various bookkeeping functions - number of conserved
variables, number of primitive variables, etc.



Hyperbolic Conservation Laws - Additional Notes

e Some current work using Chombo’s framework:

— Gas Dynamics - Current example in Chombo library (PLM
and PPM)

— Ideal MHD - Ravi Samtaney (PPPL/ANAG), Rob Crockett
(UCB Physics)

— Self Gravitating Gas Dynamics with MHD and coupling to
collisionless particles - Francesco Miniati (ETH)
e Current development:
— Particle computations

— Multifluid computations



Visualization and Data Analysis - Introduction
e ChomboVis - visualization and data analysis tool for AMR data

e Some capabilities:
— Grid display
— Data slices
— Contours / Isosurfaces
— Streamlines
— Clipping
— Data selection and spreadsheets
— State saving and restoring

— Creation of derived quantities
e Driven by user’s needs and funding

e One fulltime developer



Visualization and Data Analysis -
Design/Architecture

e Built modularly using existing software packages: Python,
VTK, Tk, HDF5

e Scripting language with all functionality available
e Data viewing and analysis a core requirement

e Use of OpenGL graphics acceleration including advanced
graphics capabilities (e.g., texture mapping)

e Reads and writes data using HDF5 which is machine
independent/portable

e Customization via startup file using scripting language
e Data read and stored only on demand
e Non-graphical versions of ChomboVis provided

e Core visualization and data analysis tool of developers



Visualization and Data Analysis - Capabilities

Demonstration and Movies



Visualization and Data Analysis - Features
e Different data centerings
e Multiple tools synchronized (master/slave)
e Offscreen rendering

e Rendering directly to encapsulated PostScript (vector output)

e Particles
¢ Embedded Boundaries
e Multifluids




Remarks - Software Availability

e Software and documentation is available locally on
“joshuatree” under “/usr/local/chombo”

e Also available on the ANAG WWW site:
http://seesar.lbl.gov/anag under “Software”

e E-mail to the developers:

— chombo@hpcrd.lbl.gov (Chombo)
— chombovis@hpcrd.lbl.gov (ChomboVis)

e This talk is available at:

— “joshuatree” under “/usr/local/chombo” as
“talk-March28.pdt”

— http://seesar.lbl.gov/anag/staff/ligocki/index.html under
the IPAM link
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